Growth Factor | Role | Application | Products |
---|---|---|---|
Bone Morphogenetic Proteins (BMPs)1-8 | Differentiation of mesenchymal stem cells (MSC) into osteoblasts Induction of osteogenesis Regulation of chondrogenesis | Spinal fusions, tibial fractures, cranioplasty | BMP-2 (rhBMP-2) BMP-7 (OP-1) FDA-approved 2002 |
Platelet-Derived Growth Factor (PDGF)6,8 | Stimulates cell proliferation, angiogenesis, and recruitment of MSC to the repair site | Periodontal bone repair, surgical fusion of the ankle and hindfoot, distal radius fractures. | GEM 21S FDA-approved 2005 |
Vascular Endothelial Growth Factor (VEGF)6 | Improves repair site vascularization | Ossification and vascularization in critical-sized mandibular bone and calvaria defects. | Not approved stand-alone |
Fibroblast Growth Factor-2 (FGF-2)6,9 | Stimulates angiogenesis Proliferation of osteogenic cells | Regeneration of mandible cortical bone | Approved in some countries |
Insulin-like Growth Factor-1 (IGF-1)10,11 | Enhances osteoblast proliferation and differentiation Matrix synthesis | Clinical studies to improve bone healing with growth hormone | Not approved stand-alone |
Parathyroid Hormone (PTH)12 | Stimulates osteoblast activity and bone remodeling | Osteoporosis treatment, off-label use for bone healing | Teriparatide (PTH 1-34) |
Therapeutic use of growth factors presents challenges, including high production costs and the need for controlled application to avoid complications like ectopic bone formation, inflammation, or increased cancer risks. Novel carriers and biologics such as polymers, composites, hydrogels, ceramics, and others are under study to provide controlled and sustained release methods. 2,3,5,7
Mechanical Signal | Application | Advantages | Limitations |
---|---|---|---|
Distraction Osteogenesis13 | Oral, orthopedic, craniofacial, and plastic surgery | No bone tissue transplant needed | Long consolidation period, pain, infection, nonunion |
Physical Therapy14 | Enhances fracture healing Prevents bone loss | Promotes bone mass and remodeling | Fatigue, lack of motivation, long duration required |
Low-Intensity Pulsed Ultrasound (LIPUS)15 | Stimulates bone formation and healing at fracture sites | Noninvasive, no side effects, low cost | No improvement in weight-bearing capacity, pain reduction |
External Fixators16 | Stabilize fractures Aid weight-bearing to promote healing | Provides stability, corrects alignment | Long duration for frame removal, pin-track infections |
Singh H, Moss IL. Biologics in Spinal Fusion. In: Biologics in Orthopaedic Surgery [Internet]. Elsevier; 2019 [cited 2024 Jun 20]. p. 165–74. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323551403000151
Senarath-Yapa K, McArdle A, Renda A, Longaker M, Quarto N. Adipose-Derived Stem Cells: A Review of Signaling Networks Governing Cell Fate and Regenerative Potential in the Context of Craniofacial and Long Bone Skeletal Repair. Int J Mol Sci. 2014 May 26;15(6):9314–30.
Mariani E, Pulsatelli L, Facchini A. Signaling Pathways in Cartilage Repair. Int J Mol Sci. 2014 May 15;15(5):8667–98.
Halloran D, Durbano HW, Nohe A. Bone Morphogenetic Protein-2 in Development and Bone Homeostasis. J Dev Biol. 2020 Sep 13;8(3):19.
Mendenhall SK, Priddy BH, Mobasser JP, Potts EA. Safety and efficacy of low-dose rhBMP-2 use for anterior cervical fusion. Neurosurg Focus. 2021 Jun;50(6):E2.
Oliveira ÉR, Nie L, Podstawczyk D, Allahbakhsh A, Ratnayake J, Brasil DL, et al. Advances in Growth Factor Delivery for Bone Tissue Engineering. Int J Mol Sci. 2021 Jan 18;22(2):903.
Tateiwa D, Kaito T. Advances in bone regeneration with growth factors for spinal fusion: A literature review. North Am Spine Soc J NASSJ. 2023 Mar;13:100193.
Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci Eng C. 2021 Nov;130:112466.
Krticka M, Planka L, Vojtova L, Nekuda V, Stastny P, Sedlacek R, et al. Lumbar Interbody Fusion Conducted on a Porcine Model with a Bioresorbable Ceramic/Biopolymer Hybrid Implant Enriched with Hyperstable Fibroblast Growth Factor 2. Biomedicines. 2021 Jun 25;9(7):733.
Giustina A, Mazziotti G, Canalis E. Growth Hormone, Insulin-Like Growth Factors, and the Skeleton. Endocr Rev. 2008 Aug 1;29(5):535–59.
Locatelli V, Bianchi VE. Effect of GH/IGF-1 on Bone Metabolism and Osteoporsosis. Int J Endocrinol. 2014;1–25.
Silva BC, Bilezikian JP. Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr Opin Pharmacol. 2015 Jun;22:41–50.
Yang S, Wang N, Ma Y, Guo S, Guo S, Sun H. Immunomodulatory effects and mechanisms of distraction osteogenesis. Int J Oral Sci. 2022 Dec;14(1):4.
Księżopolska‑Orłowska K. Changes in bone mechanical strength in response to physical therapy. Pol Arch Intern Med. 2010 Sep 1;120(9):368–73.
Palanisamy P, Alam M, Li S, Chow SKH, Zheng Y. Low‐Intensity Pulsed Ultrasound Stimulation for Bone Fractures Healing: A Review. J Ultrasound Med. 2022 Mar;41(3):547–63.
Simpson AHRW, Robiati L, Jalal MMK, Tsang STJ. Non-union: Indications for external fixation. Injury. 2019 Jun;50:S73–8.
Liu, Q., Liu, Z., Guo, H. et al. A comparative study of bone union and nonunion during distraction osteogenesis. BMC Musculoskelet Disord 23, 1053 (2022). https://doi.org/10.1186/s12891-022-06034-w
© 2025 Molecular Matrix, Inc. All rights reserved.