top of page


Koleva PM, Keefer JH, Ayala AM, et al. Hyper-Crosslinked Carbohydrate Polymer for Repair of Critical-Sized Bone Defects. Biores Open Access. 2019;8(1):111-120.


R. G, M. V, L. C. Carbohydrates in Regenerative Medicine: From Scaffolds to Cell Fate Modulators. In: Duscher D. SM, ed. Regenerative Medicine and Plastic Surgery.: Springer, Cham; 2019:129-149.


Witzler M, Buchner D, Shoushrah SH, et al. Polysaccharide-Based Systems for Targeted Stem Cell Differentiation and Bone Regeneration. Biomolecules. 2019;9(12):pii: E840.

Rao SS, Rekha PD, Anil S, Lowe B, Venkatesan J. Natural polysaccharides for growth factors delivery. In: Md Saquib Hasnain AKN, ed. Natural polysaccharides for growth factors delivery. Academic Press; 2019:495-512.


Ren B, Chen X, Du S, et al. Injectable polysaccharide hydrogel embedded with hydroxyapatite and calcium carbonate for drug delivery and bone tissue engineering. Int J Biol Macromol. 2018;118(Pt A):1257-1266.


Fan T, Chen J, Pan P, et al. Bioinspired double polysaccharides-based nanohybrid scaffold for bone tissue engineering. Colloids Surf B Biointerfaces. 2016;147:217-223.


Frasca S, Norol F, Le Visage C, et al. Calcium-phosphate ceramics and polysaccharide-based hydrogel scaffolds combined with mesenchymal stem cell differently support bone repair in rats. J Mater Sci Mater Med. 2017;28(2):35.


Gim S, Zhu Y, Seeberger PH, Delbianco M. Carbohydrate-based nanomaterials for biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(5):e1558.


Hu J, Seeberger PH, Yin J. Using carbohydrate-based biomaterials as scaffolds to control human stem cell fate. Org Biomol Chem. 2016;14(37):8648-8658.


Deng Y, Ma F, Ruiz-Ortega LI, et al. Fabrication of strontium Eucommia ulmoides polysaccharides and in vitro evaluation of their osteoimmunomodulatory property. Int J Biol Macromol. 2019;140:727-735. – Copy not available


Tohamy KM, Soliman IE, Mabrouk M, et al. Novel polysaccharide hybrid scaffold loaded with hydroxyapatite: Fabrication, bioactivity, and in vivo study. Mater Sci Eng C Mater Biol Appl. 2018;93:1-11.


Kumar S, Majhi RK, Sanyasi S, Goswami C, Goswami L. Acrylic acid grafted tamarind kernel polysaccharide-based hydrogel for bone tissue engineering in absence of any osteo-inducing factors. Connect Tissue Res. 2018;59(sup1):111-121.


Baio JM, Walden RC, Fuentes TI, et al. A Hyper-Crosslinked Carbohydrate Polymer Scaffold Facilitates Lineage Commitment and Maintains a Reserve Pool of Proliferating Cardiovascular Progenitors. Transplant Direct. 2017;3(5):e153.


Batchelder CA, Martinez ML, Tarantal AF. Natural Scaffolds for Renal Differentiation of Human Embryonic Stem Cells for Kidney Tissue Engineering. PLoS One. 2015;10(12):e0143849.


Batchelder CA, Martinez ML, Duru N, Meyers FJ, Tarantal AF. Three Dimensional Culture of Human Renal Cell Carcinoma Organoids. PLoS One. 2015;10(8):e0136758.


Park H, Choi B, Nguyen J, et al. Anionic carbohydrate-containing chitosan scaffolds for bone regeneration. Carbohydr Polym. 2013;97(2):587-596.


Guerrero J, Catros S, Derkaoui SM, et al. Cell interactions between human progenitor-derived endothelial cells and human mesenchymal stem cells in a three-dimensional macroporous polysaccharide-based scaffold promote osteogenesis. Acta Biomater. 2013;9(9):8200-8213.

bottom of page